Topics in Learning Theory

Lecture 10: Research Topics in Learning Theory

Key Concepts from the Previous Lectures

- Supervised Learning with Regularized Empirical Risk Minimization
	- **–** Test Error = Training Error + Model Complexity
- How to Estimate Model Complexity
	- **–** Concentration exponential probability inequality
	- **–** Covering numbers
	- **–** Rademacher complexity
- Regularization and model complexity
- Kernel methods deal with infinity dimensional L_2 regularization
- Boosting deal with infinity dimensional L_1 regularization/sparsity

Additional Research Topics

- Fast Convergence in statistical learning
- Online Learning
- Clustering (unsupervised learning)
- Semi-supervised learning
- Active learning
- Complex Output Prediction and complex regularization
- Sparsity

Fast Convergence

- Standard convergence rate: $\sqrt{1/n}$
- Fast $1/n$ convergence is possible under Bernstein like condition: $Var(\phi(f(x), y) - \phi(f_*(x), y)) \le bE(\phi(f(x), y) - \phi(f_*(x), y))$
- Binary classification example: statistical margin condition (Tsybakov noise condition)

$$
Var(\phi(f(x), y) - \phi(f_*(x), y)) \le b[E(\phi(f(x), y) - \phi(f_*(x), y))]^{\alpha}
$$

for some $\alpha \in [0,1]$.

− let $f_*(x) = P(Y = 1|X)$

- **–** the difficult case is around $P(Y = 1|X) = 0.5$
- **–** the condition
- Convergence rate:
	- $\sim \alpha = 0$ means no fast convergence $\sqrt{1/n}$ rate
	- $-\alpha = 1$ means $1/n$ rate
	- **–** general α implies a rate in-between
- Modern technique:
	- **–** localized Rademacher complexity and Bernstein style concentration inequality
- Related question: how to adapt to unkown α ?

Online Learning

- We observe data sequentially $(X_1, Y_1), (X_2, Y_2), \ldots$
- At each time t ,
	- $-$ Nature reveals X_t
	- **–** Statistician makes prediction $f_t(X_t)$
		- ∗ f_t depends on $(X_1, Y_1), \ldots, (X_{t-1}, Y_{t-1})$
	- **–** Nature reveals Y_t , and suffer loss $\phi(f_t(X_t), Y_t)$
- Goal: find prediction rules to minimize cummulate loss

$$
\sum_{t=1}^{n} \phi(f_t(X_t), Y_t).
$$

• Regret: Compare performance to best of $f \in \mathcal{H}$

$$
\sum_{t=1}^{n} \phi(f_t(X_t), Y_t) - \inf_{f \in \mathcal{H}} \sum_{t=1}^{n} \phi(f(X_t), Y_t)
$$

- Related: stochastic gradient descent
- Traditional:
	- **–** perceptron (2-norm regularization), winnow (entropy regularizaton)
- Modern: convex game change $\phi(f_t(X_t), Y_t)$ to $\phi_t(w_t)$,
	- $w_t \in \Omega$, where Ω is a convex set.
	- $-\phi_t(w)$ is convex in w

Convex online learning

– algorithm:

$$
w_t = P_{\Omega}(w'_t) \quad w'_t = w_{t-1} - \eta \nabla_w \phi_t(w_{t-1}),
$$

where $P_{\Omega}(w)$ is the closet point in Ω to w .

– regret bound: $\|\nabla_w \phi_t(w)\|_2 \leq b$, then

$$
\sum_{t=1}^{n} \phi_t(w_t) - \inf_{w \in \Omega} \sum_{t=1}^{n} \phi(w)
$$

Analysis

Given any $w \in \Omega$

$$
||w_t - w||_2^2 - ||w_{t-1} - w||_2^2 \le ||w'_t - w||_2^2 - ||w_{t-1} - w||_2^2
$$

=
$$
||w'_t - w_{t-1}||_2^2 + 2(w'_t - w_{t-1})(w_{t-1} - w)
$$

=
$$
\eta^2 b^2 - 2\eta \nabla_w \phi_t (w_{t-1})(w_{t-1} - w) \le \eta^2 b^2 + 2\eta(\phi_t(w) - \phi_t(w_{t-1})).
$$

Summing over $t = 1$ to n :

$$
\sum_{t=1}^{n} \phi_t(w_{t-1}) \le \sum_{t=1}^{n} \phi_t(w) + \frac{1}{2\eta} \|w_0 - w\|_2^2 + \frac{n\eta}{2} b^2.
$$

Taking optimal η , we have

$$
\frac{1}{n}\sum_{t=1}^{n}\phi_t(w_{t-1}) \leq \frac{1}{n}\sum_{t=1}^{n}\phi_t(w) + b\|w_0 - w\|_2/\sqrt{n}.
$$

- $\sqrt{1/n}$ convergence rate: same as batch setting
- Other developments: faster rates, other update rules, etc

Clustering

- Partition data into groups so that points within each cluster are close and points between clusters are not close
	- **–** example optimization problem (*k*-means): find c_1, \ldots, c_k to minimize

$$
\min_{c_1, ..., c_k} \sum_{i=1}^n \min_j \|x - c_j\|_2^2
$$

• non-convex optimization problem

Clustering Research

- When can a nonconvex clustering problems be solved efficient?
- Imposing assumptions
- An example assumption: k cluters that are well separated
	- **–** points within each cluster are very close to each other
	- **–** points between different clusters are very far from each other
- one can find clusters accurately
	- **–** example algorithm: find one point, then furthest point away, and so on...

Active learning

- Supervised learning: (X_i, Y_i) are random
- Active learning:
	- **–** obtaining label is expensive
	- $-$ how to choose X_i to label? want to label as few examples as possible.
- Related to experimental design in statistics

Confidence based active learning algorithm

- The basic idea
	- **–** if the current classifier can make confidence prediction on a point, it does not carry much information
	- **–** thus select thos points to label where the current classifier does not make confident predictions — gain more information
- Example: margin based active learning: iterate the following steps
	- **–** train a linear classifier with the current set of labeled data
	- **–** randomly draw a sample: skip if it is larger than a certain margin (more confident), accept to label otherwise (less confident)

Theory

- Example where active learning is effective:
- assumption:
	- x is uniformly distributed in a d -dimensional ball
	- **–** there is a perfect linear classifier
- in order to achieve error $\leq \epsilon$ with fixed probability
	- **–** supervised learning: require $\tilde{O}(d/\epsilon)$ examples vc theory
	- $-$ (margin based) active learning: needs $\tilde{O}(d \ln(1/\epsilon))$ examples

A more general positive result

- assumption:
	- **–** binary classification with hypothesis from finite VC-class
	- **–** there exists a perfect classifier
- conclusion: active learning helps asymptotically
	- **–** faster rate of convergence then supervised learning

Semi-supervised learning

- Labels are expensive but unlabeld data can be abundant.
	- **–** how to take advantage of unlabeld data to improve performance?
- Require assumptions.

Example: graph semisupervised learning

- Given labeled data $(X_1, Y_1), \ldots, (X_n, Y_n)$ and unlabeled data X_{n+1}, \ldots, X_m .
- Form undirected graph using data X_1, \ldots, X_m :
	- **–** connect each point to its k nearest neighors
- define regularization conditon/kernel using the graph (graph Laplacian):

$$
\sum_{j' \in N_k(j)} (f(X_j) - f(X_{j'}))^2
$$

– intuition: conntected nodes should have similar labels

• Questions: when is this method effective? How does the graph Laplacian regularization operator behave (when $m \to \infty$), etc

Example: multiview learning

- Assume we can decompose each X into two parts X^1 and X^2 representing two views: for example, multiple camera angles for face recognization or speech + face
- Assume each view is sufficient in predicting the target with a linear classifier w^1 and w^2 separately.
- Then we can require $w^{1T}x^1 \approx w^{2T}x^2$
- Solving the following co-regularization formulation:

$$
\min[\sum_{\ell=1}^{2} \sum_{i} \phi(w^{\ell T} X_i^{\ell}, Y_i) + \lambda \sum_{j} (w^{1T} X_j^1 - w^{2T} X_j^2)^2]
$$

where i goes through labeled data and j goes through unlabeled data

Complex Prediction: multi-task learning

- Consider multiple prediction problems, indexed by ℓ : observe samples $(X_i^{\ell}, Y_i^{\ell}).$
- Complex objective function: can we benefit by solving multiple problems joint?
	- **–** Yes if there are shared components
- Need to design complex regularization to couple the multiple problems

Example: sharing mean

• We have linear classifier w^{ℓ} for the ℓ -th problem. Assume 2-norm regularization, if solving independently:

$$
w^{\ell} = \arg \min_{w^{\ell}} [\sum_{i} \phi(w^{\ell T} X_i, Y_i) + \lambda ||w^{\ell}||_2^2]
$$

• Joint regularization: sharing a mean vector \bar{w} : each weight is the mean vector plus a small variation

$$
[\bar{w}, w^{\ell}] = \arg \min_{\bar{w}, [w^{\ell}]} [\sum_{i,\ell} \phi(w^{\ell T} X_i, Y_i) + \lambda \sum_{\ell} ||w^{\ell} - \bar{w}||_2^2]
$$

Example: sharing low-dimension space

- We have linear classifier w^{ℓ} for the ℓ -th problem, and separate shared lowdimensional projection of X to QX .
- Joint regularization: sharing a mean vector \bar{w} : each weight is the mean vector plus a small variation

$$
[Q, \bar{w}, w^{\ell}] = \arg \min_{Q, \bar{w}, [w^{\ell}]} \left[\sum_{i,\ell} \phi(w^{\ell T}[X_i, QX_i], Y_i) + \lambda \sum_{\ell} \|w^{\ell}\|_2^2 \right]
$$

Sparsity

- Assumption w is sparse or can approximated by a sparse weight
- empirical risk minimization

$$
w = \arg\min_{w} \sum_{i} \phi(w^T X_i, Y_i) \quad \text{ s.t. } \|w\|_0 \le b
$$

- **–** non-convex sparse constraint
- **–** when can it be solved efficiently?
- $-$ study the effectiveness of approximate solutions: L_1 and greedy algorithms – very active research topic

L¹ **regulariazation**

• Relax L_0 regularization to L_1 regularization (convex):

$$
\hat{w} = \arg\min_{w} \sum_{i} \phi(w^T X_i, Y_i) \quad \text{s.t. } \|w\|_1 \le b
$$

- Example result:
	- $-$ under some assumptions, it produces the same set of nonzeros as L_0 regularization, thus can be used to solve the non-convex problem.
	- **–** can allow $d \gg n$: the assumption roughly requires small blocks of matrix 1 $\frac{1}{n}\sum_{i=1}^n \phi''(\hat{w}^TX_i, Y_i)X_iX_i^T$ to be close to diagonal.

Some example applications

- Prediction problems with sparse target
- Sparse principal component analysis (sparse eigenvalue problem)

$$
w = \arg \max_{w: \|w\|_2 = 1} w^T A w \quad \text{s.t. } \|w\|_0 \le b
$$

• Graphical model learning (whether variables are correlated)

$$
W = \arg \max \ln(S^{-1}W) \quad \text{s.t. } \|W\|_0 \le b
$$

and W is positive semi-definite.

Where to Learn More

- Major Conferences on Machine Learning:
	- **–** COLT (Conference on learning theory)
	- **–** NIPS (Neuro-information Processing System)
	- **–** ICML (international conference of machine learning)
- All Proceedings and Papers are online
- Questions: email me *tongz@rci.rutgers.edu*