
Topics in Learning Theory

Lecture 10: Research Topics in Learning Theory



Key Concepts from the Previous Lectures

• Supervised Learning with Regularized Empirical Risk Minimization

– Test Error = Training Error + Model Complexity

• How to Estimate Model Complexity

– Concentration — exponential probability inequality
– Covering numbers
– Rademacher complexity

• Regularization and model complexity

• Kernel methods — deal with infinity dimensional L2 regularization

• Boosting — deal with infinity dimensional L1 regularization/sparsity
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Additional Research Topics

• Fast Convergence in statistical learning

• Online Learning

• Clustering (unsupervised learning)

• Semi-supervised learning

• Active learning

• Complex Output Prediction and complex regularization

• Sparsity
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Fast Convergence

• Standard convergence rate:
√

1/n

• Fast 1/n convergence is possible under Bernstein like condition:
V ar(φ(f(x), y)− φ(f∗(x), y)) ≤ bE(φ(f(x), y)− φ(f∗(x), y))

• Binary classification example: statistical margin condition (Tsybakov noise
condition)

V ar(φ(f(x), y)− φ(f∗(x), y)) ≤ b[E(φ(f(x), y)− φ(f∗(x), y))]α

for some α ∈ [0, 1].

– let f∗(x) = P (Y = 1|X)
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– the difficult case is around P (Y = 1|X) = 0.5
– the condition

• Convergence rate:

– α = 0 means no fast convergence
√

1/n rate
– α = 1 means 1/n rate
– general α implies a rate in-between

• Modern technique:

– localized Rademacher complexity and Bernstein style concentration
inequality

• Related question: how to adapt to unkown α?
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Online Learning

• We observe data sequentially (X1, Y1), (X2, Y2), . . .

• At each time t,

– Nature reveals Xt

– Statistician makes prediction ft(Xt)
∗ ft depends on (X1, Y1), . . . , (Xt−1, Yt−1)

– Nature reveals Yt, and suffer loss φ(ft(Xt), Yt)

• Goal: find prediction rules to minimize cummulate loss

n∑
t=1

φ(ft(Xt), Yt).
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• Regret: Compare performance to best of f ∈ H

n∑
t=1

φ(ft(Xt), Yt)− inf
f∈H

n∑
t=1

φ(f(Xt), Yt)

• Related: stochastic gradient descent

• Traditional:

– perceptron (2-norm regularization), winnow (entropy regularizaton)

• Modern: convex game change φ(ft(Xt), Yt) to φt(wt),

– wt ∈ Ω, where Ω is a convex set.
– φt(w) is convex in w
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Convex online learning

– algorithm:
wt = PΩ(w′

t) w′
t = wt−1 − η∇wφt(wt−1),

where PΩ(w) is the closet point in Ω to w.
– regret bound: ‖∇wφt(w)‖2 ≤ b, then

n∑
t=1

φt(wt)− inf
w∈Ω

n∑
t=1

φ(w)
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Analysis

Given any w ∈ Ω

‖wt − w‖22 − ‖wt−1 − w‖22 ≤ ‖w′
t − w‖22 − ‖wt−1 − w‖22

=‖w′
t − wt−1‖22 + 2(w′

t − wt−1)(wt−1 − w)

=η2b2 − 2η∇wφt(wt−1)(wt−1 − w) ≤ η2b2 + 2η(φt(w)− φt(wt−1)).

Summing over t = 1 to n:

n∑
t=1

φt(wt−1) ≤
n∑

t=1

φt(w) +
1
2η
‖w0 − w‖22 +

nη

2
b2.
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Taking optimal η, we have

1
n

n∑
t=1

φt(wt−1) ≤
1
n

n∑
t=1

φt(w) + b‖w0 − w‖2/
√

n.

•
√

1/n convergence rate: same as batch setting

• Other developments: faster rates, other update rules, etc
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Clustering

• Partition data into groups so that points within each cluster are close and
points between clusters are not close

– example optimization problem (k-means): find c1, . . . , ck to minimize

min
c1,...,ck

n∑
i=1

min
j
‖x− cj‖22

• non-convex optimization problem
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Clustering Research

• When can a nonconvex clustering problems be solved efficient?

• Imposing assumptions

• An example assumption: k cluters that are well separated

– points within each cluster are very close to each other
– points between different clusters are very far from each other

• one can find clusters accurately

– example algorithm: find one point, then furthest point away, and so on...
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Active learning

• Supervised learning: (Xi, Yi) are random

• Active learning:

– obtaining label is expensive
– how to choose Xi to label? want to label as few examples as possible.

• Related to experimental design in statistics
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Confidence based active learning algorithm

• The basic idea

– if the current classifier can make confidence prediction on a point, it does
not carry much information

– thus select thos points to label where the current classifier does not make
confident predictions — gain more information

• Example: margin based active learning: iterate the following steps

– train a linear classifier with the current set of labeled data
– randomly draw a sample: skip if it is larger than a certain margin (more

confident), accept to label otherwise (less confident)
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Theory

• Example where active learning is effective:

• assumption:

– x is uniformly distributed in a d-dimensional ball
– there is a perfect linear classifier

• in order to achieve error ≤ ε with fixed probability

– supervised learning: require Õ(d/ε) examples — vc theory
– (margin based) active learning: needs Õ(d ln(1/ε)) examples
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A more general positive result

• assumption:

– binary classification with hypothesis from finite VC-class
– there exists a perfect classifier

• conclusion: active learning helps asymptotically

– faster rate of convergence then supervised learning
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Semi-supervised learning

• Labels are expensive but unlabeld data can be abundant.

– how to take advantage of unlabeld data to improve performance?

• Require assumptions.
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Example: graph semisupervised learning

• Given labeled data (X1, Y1), . . . , (Xn, Yn) and unlabeled data Xn+1, . . . , Xm.

• Form undirected graph using data X1, . . . , Xm:

– connect each point to its k nearest neighors

• define regularization conditon/kernel using the graph (graph Laplacian):

∑
j′∈Nk(j)

(f(Xj)− f(Xj′))2

– intuition: conntected nodes should have similar labels
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• Questions: when is this method effective? How does the graph Laplacian
regularization operator behave (when m →∞), etc
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Example: multiview learning

• Assume we can decompose each X into two parts X1 and X2 representing
two views: for example, multiple camera angles for face recognization or
speech + face

• Assume each view is sufficient in predicting the target with a linear classifier
w1 and w2 separately.

• Then we can require w1Tx1 ≈ w2Tx2

• Solving the following co-regularization formulation:

min[
2∑

`=1

∑
i

φ(w`TX`
i , Yi) + λ

∑
j

(w1TX1
j − w2TX2

j )2]
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where i goes through labeled data and j goes through unlabeled data
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Complex Prediction: multi-task learning

• Consider multiple prediction problems, indexed by `: observe samples
(X`

i , Y
`
i ).

• Complex objective function: can we benefit by solving multiple problems
joint?

– Yes if there are shared components

• Need to design complex regularization to couple the multiple problems
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Example: sharing mean

• We have linear classifier w` for the `-th problem. Assume 2-norm
regularization, if solving independently:

w` = arg min
w`

[
∑

i

φ(w`TXi, Yi) + λ‖w`‖22]

• Joint regularization: sharing a mean vector w̄: each weight is the mean
vector plus a small variation

[w̄, w`] = arg min
w̄,[w`]

[
∑
i,`

φ(w`TXi, Yi) + λ
∑

`

‖w` − w̄‖22]
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Example: sharing low-dimension space

• We have linear classifier w` for the `-th problem, and separate shared low-
dimensional projection of X to QX.

• Joint regularization: sharing a mean vector w̄: each weight is the mean
vector plus a small variation

[Q, w̄, w`] = arg min
Q,w̄,[w`]

[
∑
i,`

φ(w`T [Xi, QXi], Yi) + λ
∑

`

‖w`‖22]
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Sparsity

• Assumption w is sparse or can approximated by a sparse weight

• empirical risk minimization

w = arg min
w

∑
i

φ(wTXi, Yi) s.t. ‖w‖0 ≤ b

– non-convex sparse constraint
– when can it be solved efficiently?
– study the effectiveness of approximate solutions: L1 and greedy

algorithms – very active research topic
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L1 regulariazation

• Relax L0 regularization to L1 regularization (convex):

ŵ = arg min
w

∑
i

φ(wTXi, Yi) s.t. ‖w‖1 ≤ b

• Example result:

– under some assumptions, it produces the same set of nonzeros as L0

regularization, thus can be used to solve the non-convex problem.
– can allow d � n: the assumption roughly requires small blocks of matrix

1
n

∑n
i=1 φ′′(ŵTXi, Yi)XiX

T
i to be close to diagonal.
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Some example applications

• Prediction problems with sparse target

• Sparse principal component analysis (sparse eigenvalue problem)

w = arg max
w:‖w‖2=1

wTAw s.t. ‖w‖0 ≤ b

• Graphical model learning (whether variables are correlated)

W = arg max ln(S−1W ) s.t. ‖W‖0 ≤ b

and W is positive semi-definite.
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Where to Learn More

• Major Conferences on Machine Learning:

– COLT (Conference on learning theory)
– NIPS (Neuro-information Processing System)
– ICML (international conference of machine learning)

• All Proceedings and Papers are online

• Questions: email me tongz@rci.rutgers.edu
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