Topics in Learning Theory

Lecture 10: Research Topics in Learning Theory

Key Concepts from the Previous Lectures

- Supervised Learning with Regularized Empirical Risk Minimization
 - Test Error = Training Error + Model Complexity
- How to Estimate Model Complexity
 - Concentration exponential probability inequality
 - Covering numbers
 - Rademacher complexity
- Regularization and model complexity
- Kernel methods deal with infinity dimensional L_2 regularization
- Boosting deal with infinity dimensional L_1 regularization/sparsity

Additional Research Topics

- Fast Convergence in statistical learning
- Online Learning
- Clustering (unsupervised learning)
- Semi-supervised learning
- Active learning
- Complex Output Prediction and complex regularization
- Sparsity

Fast Convergence

- Standard convergence rate: $\sqrt{1/n}$
- Fast 1/n convergence is possible under Bernstein like condition: $Var(\phi(f(x), y) - \phi(f_*(x), y)) \le bE(\phi(f(x), y) - \phi(f_*(x), y))$
- Binary classification example: statistical margin condition (Tsybakov noise condition)

$$Var(\phi(f(x), y) - \phi(f_*(x), y)) \le b[E(\phi(f(x), y) - \phi(f_*(x), y))]^{\alpha}$$

for some $\alpha \in [0, 1]$.

- let $f_*(x) = P(Y = 1|X)$

- the difficult case is around P(Y = 1|X) = 0.5
- the condition
- Convergence rate:
 - $\alpha = 0$ means no fast convergence $\sqrt{1/n}$ rate
 - $\alpha = 1$ means 1/n rate
 - general α implies a rate in-between
- Modern technique:
 - localized Rademacher complexity and Bernstein style concentration inequality
- Related question: how to adapt to unkown α ?

Online Learning

- We observe data sequentially $(X_1, Y_1), (X_2, Y_2), \ldots$
- At each time *t*,
 - Nature reveals X_t
 - Statistician makes prediction $f_t(X_t)$
 - * f_t depends on $(X_1, Y_1), \ldots, (X_{t-1}, Y_{t-1})$
 - Nature reveals Y_t , and suffer loss $\phi(f_t(X_t), Y_t)$
- Goal: find prediction rules to minimize cummulate loss

$$\sum_{t=1}^{n} \phi(f_t(X_t), Y_t).$$

• Regret: Compare performance to best of $f \in \mathcal{H}$

$$\sum_{t=1}^{n} \phi(f_t(X_t), Y_t) - \inf_{f \in \mathcal{H}} \sum_{t=1}^{n} \phi(f(X_t), Y_t)$$

- Related: stochastic gradient descent
- Traditional:
 - perceptron (2-norm regularization), winnow (entropy regularizaton)
- Modern: convex game change $\phi(f_t(X_t), Y_t)$ to $\phi_t(w_t)$,
 - $w_t \in \Omega$, where Ω is a convex set.
 - $\phi_t(w)$ is convex in w

Convex online learning

- algorithm:

$$w_t = P_{\Omega}(w'_t) \quad w'_t = w_{t-1} - \eta \nabla_w \phi_t(w_{t-1}),$$

where $P_{\Omega}(w)$ is the closet point in Ω to w.

- regret bound: $\|\nabla_w \phi_t(w)\|_2 \leq b$, then

$$\sum_{t=1}^{n} \phi_t(w_t) - \inf_{w \in \Omega} \sum_{t=1}^{n} \phi(w)$$

Analysis

Given any $w\in \Omega$

$$\begin{aligned} \|w_t - w\|_2^2 - \|w_{t-1} - w\|_2^2 &\leq \|w'_t - w\|_2^2 - \|w_{t-1} - w\|_2^2 \\ &= \|w'_t - w_{t-1}\|_2^2 + 2(w'_t - w_{t-1})(w_{t-1} - w) \\ &= \eta^2 b^2 - 2\eta \nabla_w \phi_t(w_{t-1})(w_{t-1} - w) \leq \eta^2 b^2 + 2\eta (\phi_t(w) - \phi_t(w_{t-1})). \end{aligned}$$

Summing over t = 1 to n:

$$\sum_{t=1}^{n} \phi_t(w_{t-1}) \le \sum_{t=1}^{n} \phi_t(w) + \frac{1}{2\eta} \|w_0 - w\|_2^2 + \frac{n\eta}{2} b^2.$$

8

Taking optimal η , we have

$$\frac{1}{n}\sum_{t=1}^{n}\phi_t(w_{t-1}) \le \frac{1}{n}\sum_{t=1}^{n}\phi_t(w) + b\|w_0 - w\|_2/\sqrt{n}.$$

- $\sqrt{1/n}$ convergence rate: same as batch setting
- Other developments: faster rates, other update rules, etc

Clustering

- Partition data into groups so that points within each cluster are close and points between clusters are not close
 - example optimization problem (k-means): find c_1, \ldots, c_k to minimize

$$\min_{c_1,\dots,c_k} \sum_{i=1}^n \min_j \|x - c_j\|_2^2$$

• non-convex optimization problem

Clustering Research

- When can a nonconvex clustering problems be solved efficient?
- Imposing assumptions
- An example assumption: *k* cluters that are well separated
 - points within each cluster are very close to each other
 - points between different clusters are very far from each other
- one can find clusters accurately
 - example algorithm: find one point, then furthest point away, and so on...

Active learning

- Supervised learning: (X_i, Y_i) are random
- Active learning:
 - obtaining label is expensive
 - how to choose X_i to label? want to label as few examples as possible.
- Related to experimental design in statistics

Confidence based active learning algorithm

- The basic idea
 - if the current classifier can make confidence prediction on a point, it does not carry much information
 - thus select thos points to label where the current classifier does not make confident predictions — gain more information
- Example: margin based active learning: iterate the following steps
 - train a linear classifier with the current set of labeled data
 - randomly draw a sample: skip if it is larger than a certain margin (more confident), accept to label otherwise (less confident)

Theory

- Example where active learning is effective:
- assumption:
 - x is uniformly distributed in a d-dimensional ball
 - there is a perfect linear classifier
- in order to achieve error $\leq \epsilon$ with fixed probability
 - supervised learning: require $\tilde{O}(d/\epsilon)$ examples vc theory
 - (margin based) active learning: needs $\tilde{O}(d\ln(1/\epsilon))$ examples

A more general positive result

- assumption:
 - binary classification with hypothesis from finite VC-class
 - there exists a perfect classifier
- conclusion: active learning helps asymptotically
 - faster rate of convergence then supervised learning

Semi-supervised learning

- Labels are expensive but unlabeld data can be abundant.
 - how to take advantage of unlabeld data to improve performance?
- Require assumptions.

Example: graph semisupervised learning

- Given labeled data $(X_1, Y_1), \ldots, (X_n, Y_n)$ and unlabeled data X_{n+1}, \ldots, X_m .
- Form undirected graph using data X_1, \ldots, X_m :
 - connect each point to its k nearest neighors
- define regularization conditon/kernel using the graph (graph Laplacian):

$$\sum_{j' \in N_k(j)} (f(X_j) - f(X_{j'}))^2$$

- intuition: conntected nodes should have similar labels

• Questions: when is this method effective? How does the graph Laplacian regularization operator behave (when $m \to \infty$), etc

Example: multiview learning

- Assume we can decompose each X into two parts X¹ and X² representing two views: for example, multiple camera angles for face recognization or speech + face
- Assume each view is sufficient in predicting the target with a linear classifier w^1 and w^2 separately.
- Then we can require $w^{1T}x^1 \approx w^{2T}x^2$
- Solving the following co-regularization formulation:

$$\min[\sum_{\ell=1}^{2} \sum_{i} \phi(w^{\ell T} X_{i}^{\ell}, Y_{i}) + \lambda \sum_{j} (w^{1T} X_{j}^{1} - w^{2T} X_{j}^{2})^{2}]$$

where i goes through labeled data and j goes through unlabeled data

Complex Prediction: multi-task learning

- Consider multiple prediction problems, indexed by ℓ : observe samples $(X_i^\ell,Y_i^\ell).$
- Complex objective function: can we benefit by solving multiple problems joint?
 - Yes if there are shared components
- Need to design complex regularization to couple the multiple problems

Example: sharing mean

• We have linear classifier w^{ℓ} for the ℓ -th problem. Assume 2-norm regularization, if solving independently:

$$w^{\ell} = \arg\min_{w^{\ell}} \left[\sum_{i} \phi(w^{\ell T} X_i, Y_i) + \lambda \|w^{\ell}\|_2^2\right]$$

• Joint regularization: sharing a mean vector \bar{w} : each weight is the mean vector plus a small variation

$$[\bar{w}, w^{\ell}] = \arg\min_{\bar{w}, [w^{\ell}]} [\sum_{i, \ell} \phi(w^{\ell T} X_i, Y_i) + \lambda \sum_{\ell} \|w^{\ell} - \bar{w}\|_2^2]$$

Example: sharing low-dimension space

- We have linear classifier w^{ℓ} for the ℓ -th problem, and separate shared lowdimensional projection of X to QX.
- Joint regularization: sharing a mean vector \bar{w} : each weight is the mean vector plus a small variation

$$[Q, \bar{w}, w^{\ell}] = \arg\min_{Q, \bar{w}, [w^{\ell}]} [\sum_{i, \ell} \phi(w^{\ell T}[X_i, QX_i], Y_i) + \lambda \sum_{\ell} \|w^{\ell}\|_2^2]$$

Sparsity

- Assumption w is sparse or can approximated by a sparse weight
- empirical risk minimization

$$w = \arg\min_{w} \sum_{i} \phi(w^T X_i, Y_i)$$
 s.t. $||w||_0 \le b$

- non-convex sparse constraint
- when can it be solved efficiently?
- study the effectiveness of approximate solutions: L_1 and greedy algorithms very active research topic

L_1 regulariazation

• Relax *L*₀ regularization to *L*₁ regularization (convex):

$$\hat{w} = \arg\min_{w} \sum_{i} \phi(w^T X_i, Y_i) \quad \text{ s.t. } \|w\|_1 \le b$$

- Example result:
 - under some assumptions, it produces the same set of nonzeros as L_0 regularization, thus can be used to solve the non-convex problem.
 - can allow $d \gg n$: the assumption roughly requires small blocks of matrix $\frac{1}{n} \sum_{i=1}^{n} \phi''(\hat{w}^T X_i, Y_i) X_i X_i^T$ to be close to diagonal.

Some example applications

- Prediction problems with sparse target
- Sparse principal component analysis (sparse eigenvalue problem)

$$w = \arg \max_{w: \|w\|_2 = 1} w^T A w$$
 s.t. $\|w\|_0 \le b$

• Graphical model learning (whether variables are correlated)

$$W = \arg \max \ln(S^{-1}W)$$
 s.t. $||W||_0 \le b$

and W is positive semi-definite.

Where to Learn More

- Major Conferences on Machine Learning:
 - COLT (Conference on learning theory)
 - NIPS (Neuro-information Processing System)
 - ICML (international conference of machine learning)
- All Proceedings and Papers are online
- Questions: email me *tongz@rci.rutgers.edu*