Topics in Learning Theory

Lecture 10: Research Topics in Learning Theory



Key Concepts from the Previous Lectures

Supervised Learning with Regularized Empirical Risk Minimization
— Test Error = Training Error + Model Complexity

How to Estimate Model Complexity

— Concentration — exponential probability inequality
— Covering numbers

— Rademacher complexity

Regularization and model complexity

Kernel methods — deal with infinity dimensional L5 regularization

Boosting — deal with infinity dimensional L, regularization/sparsity



Additional Research Topics

Fast Convergence in statistical learning

Online Learning

Clustering (unsupervised learning)

Semi-supervised learning

Active learning

Complex Output Prediction and complex regularization

Sparsity



Fast Convergence

e Standard convergence rate: /1/n

e Fast 1/n convergence is possible under Bernstein like condition:

Var(o(f(x),y) — o(f+(x),y)) < bE(O(f(2),y) — o(f+(2),y))

e Binary classification example: statistical margin condition (Tsybakov noise
condition)

Var(o(f(z),y) — ¢(fu(x),y)) < D[E(O(f(2),y) — ¢(f(),9))]”

for some a € [0, 1].

— let f.(z) = P(Y = 1|X)



— the difficult case is around P(Y =1|X) = 0.5
— the condition
e Convergence rate:

— « = 0 means no fast convergence /1 /n rate
— o= 1means 1/n rate
— general « implies a rate in-between
e Modern technique:
— localized Rademacher complexity and Bernstein style concentration
iInequality

e Related question: how to adapt to unkown «?



Online Learning

e We observe data sequentially (X1,Y7),(X2,Ys),...

e At eachtimet,

— Nature reveals X;
— Statistician makes prediction f;(X;)
* frdependson (X1,Y1),...,(X¢—1,Y:—1)
— Nature reveals Y;, and suffer loss o( fi(X:), Yz)

e Goal: find prediction rules to minimize cummulate loss

> o(f1(Xh), Ya).



Regret: Compare performance to best of f € 'H

> OUfulXi),Ye) = fnf B é(f(X0), Vi)

Related: stochastic gradient descent

Traditional:

— perceptron (2-norm regularization), winnow (entropy regularizaton)

Modern: convex game change ¢( fi(X;),Y:) to ¢ (w,),

— wy € ), where ) Is a convex set.
— ¢(w) is convex in w



Convex online learning

— algorithm:
Wy = PQ(’“%) wilt = Wi—1 — NV wde(Wi—1),

where P, (w) is the closet point in € to w.
— regret bound: ||V ,¢:(w)l||2 < b, then

qut(wt) — mf Zgb



Analysis

Given any w € 2

lwe —wll3 = w1 — wl3 < Jwp — w3 — w1 — wl]3
=lw; — we—1l2 + 2(w; — we—1) (w1 — w)

:772b2 — 277vw¢t(wt—1)(wt—1 — w) < 772b2 T ZU((bt(w) - Cbt(wt—l))-

Summing over t = 1 to n:

n
Z¢t wi—1) < Z¢t —Hwo — w3+ 777[92-



Taking optimal n, we have
1
—Z@, Wt—1 S;Z w) + b|lwy — wl|2/v/n.

e /1/n convergence rate: same as batch setting

e Other developments: faster rates, other update rules, etc



Clustering

e Partition data into groups so that points within each cluster are close and
points between clusters are not close

— example optimization problem (k-means): find ¢4, ..., ¢, to minimize

n
min 3 minljz — ¢
1=1 J

Cl,y..4CL ~

e non-convex optimization problem
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Clustering Research

When can a nonconvex clustering problems be solved efficient?
Imposing assumptions

An example assumption: k cluters that are well separated

— points within each cluster are very close to each other
— points between different clusters are very far from each other

one can find clusters accurately

— example algorithm: find one point, then furthest point away, and so on...
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Active learning

Supervised learning: (X;,Y;) are random

Active learning:

— obtaining label is expensive
— how to choose X; to label? want to label as few examples as possible.

Related to experimental design in statistics
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Confidence based active learning algorithm

e The basic idea

— If the current classifier can make confidence prediction on a point, it does
not carry much information

— thus select thos points to label where the current classifier does not make
confident predictions — gain more information

e Example: margin based active learning: iterate the following steps

— train a linear classifier with the current set of labeled data
— randomly draw a sample: skip if it is larger than a certain margin (more
confident), accept to label otherwise (less confident)
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Theory

e Example where active learning is effective:

e assumption:
— « is uniformly distributed in a d-dimensional ball
— there is a perfect linear classifier

e in order to achieve error < ¢ with fixed probability

— supervised learning: require O(d/e) examples — vc theory
— (margin based) active learning: needs O(dIn(1/¢)) examples
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A more general positive result

e assumption:
— binary classification with hypothesis from finite VC-class
— there exists a perfect classifier

e conclusion: active learning helps asymptotically

— faster rate of convergence then supervised learning
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Semi-supervised learning

e Labels are expensive but unlabeld data can be abundant.

— how to take advantage of unlabeld data to improve performance?

e Require assumptions.
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Example: graph semisupervised learning

Given labeled data (X1, Y7),..., (X,,Y,) and unlabeled data X,,1, ..., X,,.

Form undirected graph using data X, ..., X,,:

— connect each point to its £ nearest neighors

define regularization conditon/kernel using the graph (graph Laplacian):

J'€NL(J)

— Intuition: conntected nodes should have similar labels
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e Questions: when is this method effective? How does the graph Laplacian
regularization operator behave (when m — ~o), etc
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Example: multiview learning

Assume we can decompose each X into two parts X! and X2 representing
two views: for example, multiple camera angles for face recognization or
speech + face

Assume each view is sufficient in predicting the target with a linear classifier
w! and w? separately.

Then we can require w!?z! ~ w?!z?
Solving the following co-regularization formulation:
2
min[) Y p(w XY+ A (wX] - w?TXF)?]
(=1 i J

19



where ¢ goes through labeled data and ; goes through unlabeled data
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Complex Prediction: multi-task learning

e Consider multiple prediction problems, indexed by /: observe samples
(X7, Y7).

e Complex objective function: can we benefit by solving multiple problems
joint?

— Yes if there are shared components

e Need to design complex regularization to couple the multiple problems
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Example: sharing mean

e We have linear classifier w* for the /¢-th problem. Assume 2-norm
regularization, if solving independently:

v . 0T v . 2112
w' = argr?ulen[z Pp(w™ X4, Ys) + Allw[[3]

e Joint regularization: sharing a mean vector w: each weight is the mean
vector plus a small variation

@, w'] = arg p%n%] D p(wTX, V) + A [lw — 3]
WHlWHL 5 g ¢
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Example: sharing low-dimension space

e We have linear classifier w* for the ¢-th problem, and separate shared low-
dimensional projection of X to QX.

e Joint regularization: sharing a mean vector w: each weight is the mean
vector plus a small variation

[Q,w,we]—argQrBI[n Z¢ (W' [X;, QX4 Y; +AZWH
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Sparsity

e Assumption w is sparse or can approximated by a sparse weight

e empirical risk minimization

w=argmin » ¢(w'X;,Y;) st |w|o<b

— non-convex sparse constraint

— when can it be solved efficiently?

— study the effectiveness of approximate solutions: L; and greedy
algorithms — very active research topic
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L, regulariazation

e Relax L regularization to L, regularization (convex):

W= argminZ¢(wTX¢,Yi) s.t. ||lw|1 < b

e Example result:

— under some assumptions, it produces the same set of nonzeros as L
regularization, thus can be used to solve the non-convex problem.

— can allow d > n: the assumption roughly requires small blocks of matrix
LN " (wTX;,Y;) X, X[ to be close to diagonal.
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Some example applications

e Prediction problems with sparse target
e Sparse principal component analysis (sparse eigenvalue problem)

w=arg max w!Aw St ||w|o<b
w:|wll2=1

e Graphical model learning (whether variables are correlated)
W = argmaxIn(S™'W) st [[W]o < b

and W is positive semi-definite.

26



Where to Learn More

e Major Conferences on Machine Learning:

— COLT (Conference on learning theory)
— NIPS (Neuro-information Processing System)
— ICML (international conference of machine learning)

e All Proceedings and Papers are online

e Questions: email me tongz@rci.rutgers.edu
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